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Abstract 

30 years ago, T. Zoltai" [Am. Mineral. (1960), 45, 
960-973] defined a 'sharing coefficient' in order to 
classify structures with tetrahedral coordination. The 
parameter and its variants have been used extensively 
and in particular have been applied by mineralogists 
to the study of silicate structures. In this paper, the 
sharing coefficients, which are based on topological 
criteria alone, are shown to be still of great use for 
classification purposes. They are generalized further 
to cover any polyhedra of fixed coordination found 
in any kind of structure, covalent, metallic or ionic. 
A general formula is proposed and discussed which 
is not restrictive in terms of apex coordination. 
Furthermore, a modification of this general param- 
eter is proposed for the case of miscellaneous coordi- 
nation polyhedra in semi-metallic structures. 
Theoretical and practical examples illustrate the 
validity of these formulae. 

Introduction 

Structural classifications are mainly based on topo- 
logical features; such as the well-known silicate and 
phosphate classifications based on O tetrahedron 
complexes. At the same time, it has always been a 
challenge for authors to define appropriate numbers 
or letters in order to classify and compare structures, 
e.g. Pearson symbols. The sharing coefficient (Cz), 
introduced by Zoltai" (1960), was a new kind of 
parameter, which described the physical aspects of a 
structure (linking between tetrahedra) and could 
therefore be used for either classification purposes 
(particularly for silicates) or for the evaluation of 
structures from chemical formulae. Consequently, 
much interest has been shown in this parameter (see 
its variants in Table 1). Coda (1969) proposed a 
modified sharing coefficient (Cc), which he applied to 
silicate structures. Similar parameters have been 
defined by Liebau (1985), also for silicates. Parth6 & 
Engel (1986) extended the sharing coefficients to any 
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kind of linked anionic tetrahedron complexes for 
normal-valence compounds and derived a parameter 
(the so-called TT parameter) from anion and cation 
valences. Recently, Parth6 & Chabot (1990) classified 
anionic tetrahedron complexes considering not only 
normal-valence compounds but also polyanionic and 
polycationic compounds (among them, the semi- 
metallic 'Zintl phases') with a modified sharing coef- 
ficient called C'AC'. 

The advent of databases has meant that param- 
eters which express the topological features of struc- 
tures are now of great interest, 30 years after the 
publication of Zoltai"s paper. These parameters may 
be considered as shorthand descriptions of struc- 
tures, being easier to handle than a list of atomic or 
bond-length data. Furthermore, developments in the 
field of computers mean that more and more com- 
plex mathematical expressions may be of direct use. 

In this paper, the derivation of a general sharing 
coefficient is presented, which is valid for any kind of 
coordination polyhedra having any chemical com- 
position and any coordination of the polyhedron 
apices. Like Zoltai's coefficient, this general param- 
eter is derived from topological criteria only, so that 
it may be used for any structures, metallic or iono- 
covalent. Its definition is based on the clear rela- 
tionships within structures, which are often used by 
authors; for the sake of clarity, these relationships 
have been redefined in the section below. We discuss 
some further aspects of coordination polyhedra and 
linking, and a modification of this general sharing 
coefficient is proposed, which expresses miscell- 
aneous polyhedra links in semi-metallic compounds 
and takes account of valences for the ionic part of 
these structures. Finally, suggestions for future defi- 
nitions of parameters are presented. 

Basic structural algebra 

Let us consider a structure of chemical composition: 
K~...Zz(C',An) + other molecules or complexes. C' 
are atoms which centre the considered polyhedra 
built of A atoms. In this definition more than one 
kind of atom (indifferently anions or cations) can be 
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Table 1. Existing sharing coefficients and other parameters describing structures with tetrahedral complexes 

A u t h o r s  
Zoltai (1960)* 

Coda (1969) 

Liebau (1985) 

Parth6 & Engel 
(1986) 

or 
Engel (1986)* 
Parth6 & Chabot 

(1990)* 

Parameter Formula or examples 
Sharing coefficient C z = 2a + 1 - a(a  + 1 )n/(4m" ) 

Modified sharing coefficient Cc = (Cz - 1)4 

Linkedness L = 0 (isolated tetrahedra) 
L = I (corner-sharing) 
L = 2 (edge-sharing) 

Connectedness s = 0 (isolated tetrahedra) 
s = 1 (2 tetrahedra linked) 

TT TT= 1(8 - 2n/rn') 0<__ T T < 4  
TT = 2(8 - 3n/m" ) 4 ~ T T  < 8 

TT= 3 ( 8 - 4 n / m ' )  8-< TT_< 12 
for C.~(C'~.A.) 

T T  = 8a - (a 2 + a)n/m" 

V E C n  VECA = ( m e c  + m ' e c  + ne~) /n  
for C , . ( ~  A.) 

C "C" C "C" = (n /m") (  VECA - 8) 
for VEC,~ > 8 

A A  A A  = 8 - VECA 
for VECa  < 8 

C ' A C "  If VEC,~ = 8, similar to TT: 
complete definition in the 

Appendix  

Authors '  definition 
Average number of tetrahedra participating in the 

sharing of  a comer in a structure 
Average number per tetrahedron of  shared 

oxygens 
Number of  O atoms shared between two adjacent 

[SiO.] polyhedra 

Number of  [SiO.] polyhedra that share O 
atoms with the [SiO~] polyhedron considered 

Average, per tetrahedron of  the sum (over all four 
corners of  a tetrahedron), of  the number of  
tetrahedra which are connected with one 
comer of  the tetrahedron considered 

Partial valence electron concentration with respect 
to the anion (A) 

Average number of  electrons per central atom for 
C ' - - C '  bonds and/or lone pairs on the C" atom 
in polycationic compounds 

Average number of  electrons per anion for A - - A  
bonds in polyanionic cc~mpounds 

Average number of  C ' - - A - - C "  links per 
tetrahedron 

* In their descriptions, the authors consider that the apices are shared between a and a + 1 tetrahedra except for parameter k of  Parth6 & Chabot (1989) 
whose definition is slightly different (see Appendix). 

defined as C' or A. Kk...Zz are other atoms K to Z 
needed to balance the electrical charge of the 
structure. 

With the assumption that the coordination 
number of the polyhedra considered is equal to P, 
there are within the structure, on average (per 
polyhedron), N1, N2...Nj apices coordinated to 1, 2...j 
C' atoms respectively and 

N1 + N2 + ... + N j =  P. (1) 

A similar equation is applied by Parth6 & Chabot 
(1990) to tetrahedra (P = 4). These N numbers are 
average numbers. They are defined from the chemi- 
cal formula as follows. For nl, n2...n s A atoms coordi- 
nated to l, 2...j C' atoms: 

Nx = xn~,/m' (2) 

for which n- -Znx,  where x is the partial coordina- 
tion number or the number of bonds (central A 
a tom--C '  atoms) with x = 1, 2...j. In addition to (1), 
a similar expression to (2) is used by Wells (1983). 

Since the sharing coefficients are average values 
calculated over each structure, it is convenient to 
define an average partial-coordination number 
(central A a toms- -C '  atoms): 

J 
(x) = Y, (xnx)/n. (3) 

x = l  

It is surprising to note that another similar equation 
can be derived [compare (1) and (2)]: 

J 
P = T (Xnx)/m'. (4) 

x = l  

Consequently: 
P = (x)n/m' (5) 

so that the ratio of the stoichiometric compositions 
of C' and A atoms is strictly equal to the inverse 
ratio of their coordinations. This principle facilitates 
the calculation of (x). 

Extended sharing coefficients 

Let us now extend Zoltai"s sharing coefficient Cz to 
any kind of A-atom, partial coordination (x) and any 
C' coordination (P). According to the definition of 
Zoltai 's parameter (average number of tetrahedra 
participating in the sharing of a corner in a structure; 
Table 1), we may write the general expression for any 
kind of polyhedra of coordination number equal to 
P: 

J 
{Cz} = ~ (xNx)/P. (6) 

x = l  

The extended Zoltai" sharing coefficient ({Cz}) is 
related to the average partial coordination number of 
A atoms towards C' atoms per number of A atoms in 
a structure by the following equation [compare (2)]: 

J 
{Cz} = Z (x2n~)/(Pm'). 

x = l  

Now with (x 2) = Y~= l(x2nx)/n and (5): 

{c;) = (7) 

which is a general equation for {Cz}. 
It is in fact more convenient to work with the 

A-atom chemical compositions (expressed by nx) 
than with the polyhedron apices (or Nx), as the n~ 
may be easily obtained from bond-length calcula- 
tions which include the numbers of A and C' atoms 
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in the structure. However, in order to define a 
parameter relative to the C' atoms (or to the con- 
sidered polyhedra), it is helpful to refer to the N 
parameters. Thus, each polyhedron of the structure 
may be bound to other polyhedra of the structure 
through its apices, and calculated over the structure 
(there are as many polyhedra as m' C' atoms), the 
sum of all these bonds is: 

J 

PPm'  = • [(x - 1) Nx]m'. 
x = l  

PP, or the average number per polyhedron of 
polyhedron-polyhedron connections through the 
apices of the polyhedra considered, is similar to T T  
(definition given in Table 1). With (2), the equation 
for PP becomes: 

J 

P P =  2 [ ( x -  1)Xnx]/m'. 
x = l  

Comparing this with equation (3) and with (x 2) = 
Y~= l(nxX2)/n, one finds: 

PP = ( ( x  2) - ( x ) ) n l m '  (8) 
which is a general equation for PP. 

Finally, using (5) and (7), one obtains: 

m ,  = ( ( x ) { c z }  - (x))pl(x) 
PP= P({cz}- I). (9) 

Coda's modified sharing coefficient (see Table 1, P = 
4) is now extended to any kind of polyhedra bound 
to each other with any apex coordination. 

Equations (6) to (9) are valid for any A-atom 
coordinations and for polyhedra centered on any C' 
atoms. It is also possible to consider several kinds of 
polyhedra in the structure, i.e. using average values 
for P ((P)) could be useful for some classifications 
[for borates with 3 _ {P) <_ 4; see the classification by 
Christ & Clark (1977)]. One thus sees the wide range 
of applications for PP or {Cz}. 

In Fig. 1, values for {Cz} are plotted as a function 
of (x 2) for different values of (x). One notices that 
for a given composition n/m' and a given polyhedron 
and therefore a given average partial apex coordina- 
tion (x), the higher the value of {Cz}, the more varied 
the apex coordination will be. 

Equipartition or the equivalence of maximal order and 
minimal bonding 

The difficulty in using (7) and (8) lies in choosing a 
value for (x2). Accordingly, Zolta'/'s expression (see 
Table 1) may be interpreted as a simplified formula 
for calculation of the sharing coefficient, which 
avoids calculation of (x2). 

Considering the end terms for which all n A atoms 
of the formula unit are surrounded in the structure 

by exactly the same number of C' atoms, we may 
write with (x 2) = Y.~= l(x2nx)/n: 

<x 2) = x 2, 

whence 
C z - - X .  

Here x is the partial coordination number (A central 
a tom- -C '  atoms). 

As shown in Fig. 1, all other values for the 
extended ZoltaY sharing coefficient {cz} are linear 
combinations of these end terms. For structures in 
which the number of A atoms in the formula unit 
show only two different partial coordinations (na A 
atoms are coordinated to a C '  atoms and r/b A atoms 
to b C'  atoms): 

{cz} = (a + b) - ab[n/(naa + nbb)] 

{Cz} = (a + b) - ab[n/(m' P)] (10) 

and with (9): 

PP = (a + b - 1 )P - ab(n/m'). (11 ) 

The parameters {Cz} or PP are now easily calculated 
from the chemical composition of the structure, 
assuming that values for the partial coordinations 
(central A a t o m - - C '  atoms) (a and b) are known. 

Zoltai" (1960) derived his formula on the assump- 
tion that "the difference between the smallest and 
largest number of tetrahedra participating in the 
sharing of a tetrahedral corner in a structure cannot 
be more than 1". His equation is found when one 
inserts b = a + 1 and P = 4 in (10) (compare Table 
1). With this assumption, Engel (1986) derived a 
general equation for T T  [(11) with b = a + 1 and P = 
4, Table 1]. Expressing the same idea with a slightly 

{c Z} 
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Fig. 1. The extended Zoltai" sharing coefficient ({Cz} = (x2)/(x))  
calculated for apices with partial coordination up to four C '  
atoms (x _< 4). Nx = P: all apices of  the polyhedra considered in 
the whole structure are bound to x C '  atoms. Linear combina- 
tions between these end terms are drawn with thin lines and 
illustrated with theoretical examples (the relation N<JNb is 
independent of  P). Black circles: example cited in text (n /m '  - 8. 
P = 4). 
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different formulation, Parth+ & Chabot. (1990) 
named this observation equipartition. 

In Fig. 2, values for the partial coordinations a 
a n d  b are calculated with an expression derived from 
(3) and (5) and with na + nb= n: 

a = P ( m ' / n ) - ( b - a ) n b / n  (12) 

a < b; nb/n < 1; P = 4 (i.e. tetrahedra). 
From Fig. 2, it may be deduced that values for the 

lowest partial coordination (a) may be calculated as 
the integer part of [(x) - (b - a)min + 1 ]. For example: 
for the average chemical composition of the con- 
sidered tetrahedra m'/n  = ~, (x )=  2.5, a = 2 for half 
of the A atoms in the formula unit and b = a + 1 = 3 
for the other half of the A atoms in the formula unit; 
this is the case of equipartition. However, if a = 2 for 
three quarters of the A atoms in the formula unit, b 
= 4 for one quarter of the A atoms, meaning non- 
equipartition; there are several other possibilities for 
non-equipartition: i.e. one quarter of the A atoms 
bond to one C'  atom (a = 1) and three quarters of 
them to three C'  atoms (b = 3); or half of the A 
atoms bond to 1C' atoms (a = 1) and the other half 
to 4 C'  atoms (b - 4). For the cases cited, the values 
for the extended sharing coefficient are respectively 
(compare Fig. 1) 2.6, 2.8 and 3.4. Thus the most 
economical ({Cz} = 2.6) is the case of equipartition. 
This may be the reason why equipartition was 
observed for most anionic tetrahedron complexes 
[i.e. 167 out of 172 structure types of normal-valence 
compounds described by Parth+ & Chabot (1990)]. 
However, if PP is calculated on only part of a 
structure, non-equipartition may be observed more 
often than expected. 

V a r i e t i e s  o f  p o l y h e d r a  and  l i n k a g e s  

The successful application of sharing coefficients to 
structures depends firstly on the choice of the con- 

<X> 

o r  ,~, P = 4 b - 'a = 0 

<x,- = Pm'./n (b-a)mm= 1 ~tn=0.s 
3 _ 3 ~ . . _ : . ~ _ _ ~ . ( b -  a ) r r ~  = z ~,~l a =  o.s 

/ ~ ' . . "  . - . . ( b - a ) m i  a = 2  n b l n = 0 . 7 5  

2 _ 2/.I.'..T~. :T "'-... (b-a)min =3 ~nb/n=0-67 

I I " " 
- . ~  . . . . . . . . . . . . . . . . . .  : : :  : :  ~ i . ' : ' : ' : ' : ' : ' : ' : ' : ' :  

I 
I 

i i i i t m'/n 
0.25 0.5 5~80.75 1.0 

Fig. 2. Apices coordination (a and b; integer values) calculated as 
a function of the apices composition (m'/n) for polyhedra with 
P = 4. T h e  pe rcen tage  o f  apex  c o n t e n t  (nJn) and  the min ima l  
possible  c o o r d i n a t i o n  dif ference (b - a)mi. a re  indica ted  for  each  
b r o k e n  line. Ob l ique  line: ave rage  par t ia l  c o o r d i n a t i o n  (x) as a 
func t ion  o f  m'/n. 

Table 2. Regular polyhedra o f  A atoms centered by C" 
atoms with coordinations up to 8 

Number of  
Number (A--A) edges  

Polyhedron P of  edges (isolated polyhedron) 
Triangle 3 3 2 
Square 4 4 2 
Tetrahedron 4 6 3 
Square pyramid 5 8 3 (basis) or 4 
Trigonal bipyramid 5 9 4 (basis) or 3 
Trigonal prism 6 9 3 
Octahedron 6 12 4 
Cube 8 12 3 
Square antiprism 8 16 4 

sidered polyhedra. Until now, these parameters have 
been applied in iono-covalent structures with tetrahe- 
dra, which are clearly defined polyhedra with minor 
deformations (i.e. oxygen tetrahedra in silicates, 
phosphates). In these structures, the A atoms coin- 
cide with the anions which are large atoms relative to 
the cations (or C '  atoms). For these structures, 
Pauling's 1st rule (Pauling, 1960) is valid, which 
determines the possible polyhedra formed by A 
atoms around C'  atoms by the ratio of their atomic 
radius; this corresponds to polyhedra edges being 
equal to at least twice the A-atom radius. Table 2 
cites the most regular polyhedra observed in struc- 
tures. Emphasis is placed on the numbers of (A- -A)  
edges intersecting each apex (see Table 2). 

It is clear, that in more compact structures, the 
number of A - - A  edges should be relatively high. 
This is the case for tetrahedra and octahedra, which 
are the most commonly encountered polyhedra in 
structures {tetrahedra: 3 A - - A  edges on each apex, 
or [number of (A- -A)] /P  = 0-75, octahedra: 4 A - - A  
edges, [number of (A- -A)] /P  = 0-67}. The next high- 
est values for isolated polyhedra are for the coordi- 
nation number 5, [number of ( A - - A ) ] / P = 0 . 6 4  
(square pyramid), 0.72 (trigonal bipyramid) and the 
coordination number 3 {[number of ( A - - A ) ] / P =  
0.67}. In close-packed structures the perfect fitting 
together of tetrahedra and octahedra enables the 
highest order as well as the maximum number of 
A - - A  edges (12). Considering the tetrahedra occu- 
pied by the Zn atoms in the cases of wurtzite and 
sphalerite, one calculates a TT value of 12 (corner- 
shared; in these structures only half of the possible 
tetrahedra are centered by Zn atoms). Each A atom 
is thus equally bound to four C '  atoms. This seems 
relevant for maximum coordination of A atoms to 
C'  atoms in the case of tetrahedra in iono-covalent 
compounds. In the same packed structures of com- 
position C'A (C' atoms now center A octahedra), x 
= 6 and OO = 30, which corresponds to eight octa- 
hedra in contact with a central octahedron (h.c.p.; 
six edge-shared plus two face-shared with central 
octahedron) or 12 octahedra (c.c.p.; apices shared 
between six octahedra and edges between two). As 
shown in Table 3, for a proper definition of a 
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structure, P and PP should be indicated for each 
clearly defined chemical complex; a short description 
should be given as well, since PP is independent of 
the linkedness (Liebau, 1985; definition given in 
Table 1) and so does not indicate the real number of 
polyhedra linked to a considered polyhedron. 

PPmax is a parameter dependent on the partial 
A-atom coordination. However, in the case of 
equipartition, only the minimum (A - -C ' )  coordina- 
tion has to be known since b = a + 1 and a = integral 
part of (x) (see above). 

Coordination and valences 

In any structure with ionic bonds, coordinations and 
valences are intimately related [see the bond-strength 
definition or electrostatic valence rule (Pauling, 
1960)]. Parth6's VECA [see definition in Table 1 
(Parth6, 1973)] may be interpreted as a measure of 
the metallic or highly covalent part of an otherwise 
ionic structure. So, if VECA<8, the so-called 
polyanionic structures present valence electrons 
which the anions may share in anion--anion bonds; 
if VECA > 8, then the so-called polycationic structure 
may present cation---cation links or 'non-bonding 
orbitals' (NBO). 

In the case of VECA = 8 or normal-valence com- 
pounds, by definition, there are only anion---cation 
bonds in the structure and the cations center poly- 
hedra built of anions. The more the polyhedra are 
linked together, the less other cations (or other 
polyhedra bound to these cations) will be in the 
structure. For instance, in the SiO2 quartz structure, 
all tetrahedra are linked together, all charges being 
compensated, whereas in Ca2(SiO4), the charge of the 
tetrahedron, equal to 4, 'attracts' the Ca atoms. 
Furthermore, the less positive the charge of the C'  
atoms, the more the tetrahedra have an ability to 
bind together. This defines TTmax as a function of the 
charges of anions and cations (Parth6 & Engel, 
1986). 

This function may be simply derived from the 
charge equilibrium within structures. In the case of 
PPmax, the composition of the compound will be of 
type C'm,A,,. For this normal-valence compound, the 
charge-balancing equation is expressed as (atoms of 
different kinds are now called C' or A atoms but C' 
- cations and A = anions): 

m'{ec,) = n(8--eA) 
where (ec,), (8-eA) are respectively the average C'  
cationic charge per C'  cation and average A anionic 
charge per A anion [ec,, eA: numbers of valence 
electrons of the cations (C') or anions (A)], so 

(ec,) /(8-eA) = n/m'. (13) 

Thus, replacing (n/m')min by (ec,) /(8-ea) in (11), one 
finds for PPmax: 

PPmax = (a + b - 1)P - ab(ec,)/(8 - e A) (14) 

for normal-valence compounds. 

Miscellaneous polyhedra 

For structures with anionic tetrahedron complexes, 
Parth~ & Chabot (1990) established a classification 
based on the VECA, AA or C'C '  (definitions in 
Table 1) and a third parameter called C'A C' which 
expresses 'the average number of C ' - - A - - C '  links 
originating from a tetrahedron' (definition in 
Appendix); if C'C'>O,  these authors add a param- 
eter 'x' which defines the number of C ' - - C '  bonds 
relative to the 'non-bonding orbitals' in the structure 
(also called 'lone pairs'). In these structures, the C'  
atoms which center the tetrahedra are cations rela- 
tive to the A atoms (or anions). The tetrahedron 
complexes are now miscellaneous in the sense that 
the polyhedron geometry is altered by 'non-bonding 
orbitals' in the complex or that tetrahedron linking is 
different when anions or cations are linked together. 

For these miscellaneous polyhedra we propose a 
modification of PP, which takes account of the 
chemical composition m' (cations in the polyhedra) 
and no (anions in the polyhedra), and of the AA and 
C'C'  parameters. Now, for each C ' - - C '  bond, one 
negative charge is added to the polyhedra, for each 
NBO, two charges are added to each polyhedron 
whereas for each A - - A  bond, one negative charge is 
subtracted from the polyhedron. These particular 
features of the polyhedra may be needed in struc- 
tures with ionic character in cases where more or less 
positive charges are available in the structure (i.e. 
through other cations). It is therefore worthwhile 
analyzing the effect of these special bonds in relation 
to the charge balance in the compound. 

In order to calculate PP,,, one assumes that the 
considered polyhedron should not be altered (P = 
constant), even if polyhedra with 'non-bonding 
orbitals' (NBO) show a different coordination than 
expected (theoretical examples shown in Fig. 4). This 
implies that the apex composition of the polyhedra 
(n/m) is now equal to the anion/cation composition 
(no/m') plus C'C' /2  respectively minus (AA/y)no/m' 
(AAno/m': average number of A - - A  bonds per 
polyhedron). The average partial coordination 
number for apices which, among other bonds, share 
A - - A  bonds (y) is equal to 2 in most cases; the 
partial coordination for the C'  atoms with C ' - - C '  
bonds is equal to 2; the partial coordination for C'  
atoms with NBO's is equal to 1 and C'C'  is equal to 
twice the number of NBO's [since each NBO 
requires two electrons according to Parth~ & Chabot 



222 A G E N E R A L  SHARING COEFFICIENT 

(1990)]. So the general equation for PP (8) becomes: 

PPm = ((xZ)-(x))[( 1 -AA/y)no/m' + C 'C ' /2]  (15) 

which is a general equation. 
With respect to simplifying this equation, it is 

worthwhile redefining the concept of equipartition. 
With the help of ZoltaY's assumption (see above), the 
partial coordination of all apices may be considered 
as the number (of polyhedra) participating in the 
sharing of a (polyhedral) 'corner'. So each AA or 
C ' C '  link is shared between two polyhedra and each 
NBO is 'linked' to only one polyhedron. Now, if all 
apices (including C ' - - C '  bonds, A - - A  bonds and 
NBO's) are shared between a and a + 1 neighbouring 
polyhedra then the right part of equation (15) can be 
simplified and: 

PPm = 2 P a - a ( a +  1)[(1 - A A / y ) n o / m '  + C 'C ' /2 ]  (16) 

for equipartition among all links, where a = integral 
part {P/[(1 -AA/y)no /m '+  C'C' /2]}  since the average 
partial coordination of the apices is now: (x )=  
P / [ ( 1 -  AA/y)no/m' + C'C' /2] .  

Function (16) is shown in Fig. 3. Theoretical 
examples for P = 4 and C'C'>_ 0 are presented in 
Fig. 4 as a function of anion/cation chemical com- 
position (no/m'); these examples illustrate different 
values for a. Among sulfide minerals, pyrite and 
covelline present complex structures with AA > 0 
(Table 3). For less complex structures, as may be 
noted from Fig. 3, if a =  1 and the difference 
between the minimum partial coordination calcu- 
lated for C ' C ' =  AA = 0 (ao) and a is equal to 0, 
then (16) becomes simply: 

PP,,, = P P o - C ' C '  + AAno/m' (16') 

for PPo calculated from (11) with n / m ' =  no/m', a = 
1, b = 2 and 0_< PPo <- P. 

PPm C'C' % tm' AA 
[F=6 ~=4 

12 

15 .... I0 

1 2  8 

9 .... 6 

6 .... 4 _  

3 . 2 t 

0 • 0 
0.0  ' 1.10 " 2,J0 ' 310 ' 4 0  ~ = 4 

0 .0  1 5  3 .0  4 5  6 0  is' = 6 ] 13ol m' 

Fig. 3. Calculation of PPm as a function of the anion/cation 
composition (no/m') for tetrahedra (P = 4) or octahedra (P = 6) 
for the case of equipartition (16). Heavy line: no/m'AA = C'C' 
= 0 (see Fig. 1). Other values for no/m'AA and C'C" increase by 
P/4 for each thin line. Hatched squares: examples for n,,/m" = 1 
in Fig. 4. 

Now, as for normal-valence compounds, the 
parameter PPm may be related to the charge of the 
complex considered [(9) in Parth6 & Engel (1986)]. 
The average charge of the complex per polyhedron 
(chcomplex/m') is deduced from the balance of charges 
in the compound and from the definitions of C ' C '  
and AA: 

chcomp,ex/m' = (8 - eA>no/m'-<ec,> + C' C ' -  AAno/m' 

It is also worthwhile to have some idea of the 
maximum value of PP,, allowed for a given valence 
composition of anions and cations forming the con- 
sidered polyhedra. In a similar way as for (14): 

(no/m')min = ((ec,>- C'  C')/((8 - cA>- AA) 

and using (16), calculated for the case of equipar- 
tition: 

PPmax = 2 P a - a ( a +  1)[(ec .>+(<8-eA>/2-1)C'C'  

-- (<8 -- e A>/y--1)AAno/m']/(8 - e A). 

For example: a structure with ec, = 4, eA = 6 and 
C'C' - 2 ,  (no/m')min = 1 and PPmax=4. GeS in 
Parth6 & Chabot (1990) is built of tetrahedra with 
PP,, = 6 and one NBO which is not an equipartition 
case (equipartition among all links, see above, Fig. 4 
and a comment in the Appendix)! Note further that 
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Table 3. PP values and coordinations of  C" and A 
atoms in mineral structures 

K.. .Z(C'A) Minera l  P 
Sulfides 
ZnS Sphalerite 4 

Wurtzite 4 
MoS2 Molybdenite 6 

FeS2 Pyrite 6 
Cu(Cu2S~) Covelline 4 

Cu2(CuS)S2 Covelline 3 
(Cu2 ÷ Cu2' $3) Covelline 3.67 

(x) PP P P , . O  Descr ip t ion  

4 12 C.c.p. 
4 t2 H.c.p. 
3 12 Layers of edge-linked trigonal 

prisms 
4 h 18 NaCI type with S--S pairs 
3.2 * l0 Framework of tetrahedra 

in pairs 
3 6 Layers of triangles 
4.4 a - 12.7 Framework of triangles 

+ tetrahedra 

Oxides  
TiO2 Anatase 6 3 12 Edge-linked oetahedra 

framework 
ThO2 Thorianite 8 4 24 Fluorine type 
A 1 2 0 3  Corundum 6 4 18 Edge- and apices-linked 

octahedra framework 
TiO2 Rutile 6 3 12 Edge- and apices-linked 

octahedra framework 
Mg(OH)2 Brucite 6 3 12 Edge-linked octahedra layers 

Notes :  (a) e q u a t i o n  (15) or  (16); (b) AA = 1, y = 4; (c) non -equ ipa r t i t i on ,  
AA = 0.67, y = 4, no~m" = 1.5; (d) equ ipa r t i t ion ,  AA = 0-67, y = 4, no~m" = 
1"0. 

for polyhedra with anions with eA = 6 (i.e. oxygen), 
PPmax is a constant for each composition ec , / (8-  eA) 
for any value of C'C' .  

The parameter PPm has been derived from topo- 
logical criteria only with the help of the formulation 
given by Zolta'i (1960). Before using this parameter, 
one should know which are the polyhedra to con- 
sider, their chemical composition and values for 
C'C '  and A A (formulae given in Table 1). As a 
result, this parameter gives the average number (per 
polyhedron) of polyhedron-polyhedron connections 
through the apices of the considered polyhedra. This 
is the same meaning as PP. In addition the maxi- 
mum possible value is easily obtained from the 
charges within the complex considered. In this 
respect, it gives more information than the parameter 
C'AC'  given by Parth6 & Chabot (1990). It may be 
calculated directly from the chemical formula since 
no precise indication of C ' - - C '  bonds or NBO's is 
needed. (This indication may however be used for a 
description of the structures or for the definition of 
base tetrahedra avoided here.) Finally, the general 
expression (15) is valid for structures with any kind 
of polyhedra sharing; the parameter C'AC'  was 
restricted to tetrahedra links in cases of equipartition 
and non-equipartition for which b -  a + 2 [(13) to 
(15) in Parth6 & Chabot (1990), see Appendix]. So, 
we recommend the use of PP,,, for classification 
purposes in addition to C'C'  and AA, or to no/m'. 

How to define successful parameters 

Any kind of parameter may be defined with a view to 
classifying or comparing structures. However, the 
above discussion concerning sharing coefficients 

offers an opportunity to draw up some recom- 
mendations. Successful parameters may be described 
as follows: their derivation should be based on rigid 
physical aspects of the structures, i.e. well defined 
coordinations, valences, or precise crystallochemical 
rules; they should express as many aspects of the 
structure as possible (coordination ratios also express 
valence ratios in ionic compounds; do not forget that 
topological criteria may offer a clue to understanding 
the energy distribution and order in structures); to 
use these parameters, the input must be kept to the 
minimum (i.e. to the input which allows an evalu- 
ation of the structure from the chemical formula); if, 
for any purpose, a simplification has been introduced 
into the formulation of the parameter, this simpli- 
cation should be based on a physical aspect of the 
structure and as such should be clearly indicated (the 
problem of equipartition); although the use of com- 
puters facilitates many kinds of calculation, the 
results of these calculations i.e. the values obtained 
for these parameters, should express a simple con- 
crete aspect of the structure. 
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APPENDIX 

The relation between the modified sharing 
coefficient (C'AC') of Parth6 & Chabot (1990) and 

the equations for PPm 
For the case of equipartition, the modified sharing 
coefficient given by Parth~ & Chabot (1990) is as 
follows: 

C'AC'  = k [ 2 N c , _ A - ( k  + 1)(n/m')] (A1) 

where Nc,--A = 4 - [ ( 1  + 'x ' )C 'C ' ] /2  for which 'x' 
relates the average number of C ' - - C '  bonds 
(Nc,-c,)  to the number of non-bonding orbitals per 
central atom (C') ( ' x ' = N c ' _ c . / C ' C  ') (authors' 
definition) and k is the larger number of C ' - - A - - C '  
links on which the different anion of a tetrahedron 
participate and 

k < [Nc,_A/(n/m')] <- k + 1 (authors' definition) (A2) 

For VECA = 8, Nc,--A = P, so that 

Nc,_A/(n/m') = (x) 

and k is equivalent to the integer part of (x). 
Thus with a = k, (A1) is identical to the equation 

given by Engel (1986) (Table 1). For VECA<8, 
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NC'--A = P but n/m' = no/m' in (A2). For VEC,~ > 8, 
Nc,--A = P - [ 1  + 'x ' ]C 'C ' /2  and n/m' = no/m' in 
(A2). The definitions for equipartition given by both 
of us are very different and may lead to diverging 
results (for GeS there is non-equipartition while cal- 
culating PPm, whereas equipartition is possible 
according to the calculation of C'AC') .  A strict 
correlation between (16) and (A1) in the case of 
structures with VECA ;~ 8 is therefore tedious and 
may lose any practical sense. 

A simplified case is given by equation (16'). For 
this equation, k and a coincide, since no more than 
one C'AC '  or two central cations through each apex 
are expected in the complexes and: 

C ' A C '  = PP,,, - AA(no/m') - 'x 'C'C' .  (A3) 

C ' A C '  may also be derived from the general equa- 
tion of PPm (15) with (A3) and becomes incidently a 
general parameter! 
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Abstract 

Manganese hexafluorosilicate-deuterium oxide (1/6), 
MnSiF6.6D20, Mr = 317, hexagonal, P3 (No. 147), 
a = 9"678 (11), c = 9.820 (9) A,, V= 797 (3) A), Z = 3, 
D~ = 1.96 g cm-3, ~ = 0.8307 (5)/~, # = 0.50 cm-i  
(evaluated), F(000)= 32.38, room temperature, final 
R(F) = 0.118 for 400 observed reflections. Above 
244 K MnSiF6.6D20 is described by fitting the struc- 
tural models previously proposed for MgSiF6.6H20 
above 300 K and FeSiF6.6H20 above 240 K. The 
structure consists of an arrangement of domains of 
different octahedra orientations with equal volumes. 
The water molecule is perfectly determined: the 
D O bond distances are 0.9287 (8) and 
0.9351 (8)/~, and the D---O---D angle is 109.3 (1) °. 
The lengths of the H bonds are 1.852 (2) and 
1.814(2) A for D(1)...F and D(2)...F, respectively. 
When the temperature is lowered from about 244 K, 
MnSiF6.6D20 undergoes a structural phase transi- 
tion with hysteresis of - 4  K. 

Introduction 

In the fluosilicates MSiF6.6D20 ( M =  divalent 
metal), the two complex ions M(H20)62+ and SiF62- 

0108-7681/91/020224-05503.00 

form octahedra, with a distribution between two 
orientations around the threefold axis. In the case of 
Co, Ni and Zn at room temperature, the disordered 
structure (space group R3) described by Ray, Zalkin 
& Templeton (1973) has recently been corroborated 
by neutron diffraction on CoSiF6.6D20 at room 
temperature (Chevrier & Saint-James, 1990). The F 
sites of the disordered SiF6 octahedra were found to 
have equal occupation probability (0-5/0.5), instead 
of 0.43/0-57 as previously determined. In the case of 
MgSiF6.6H20 (T___ 300K) and FeSiF6.6H20 (T___ 
240 K) the superstructure reflections, inconsistent 
with the structural models (space group R3m) 
described by Syoyama & Osaki (1972) and Hamilton 
(1962), were explained in terms of an arrangement of 
antiphase domains. In the crystal, the juxtaposition 
of domains (space group P3) with two different 
octahedra orientations related by pseudo mirrors 
(11.0) and with equal volumes is sufficient to explain 
all the experimental observations. In MgSiF6.6H20 
these domains are extensive (Jehanno & Varret, 
1975; Chevrier & Jehanno, 1979), whereas in 
FeSiF6.6HzO the domain size is a function of tem- 
perature (Chevrier, Hardy & Jehanno, 1981). 

At room temperature superlattice reflections are 
also observed for the MnSiF6.6H20 fluosilicate, and 
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